ROADWAY DEFICIENCIES

LEGEND
CAPACITY
« Movement Expected to Reach Unacceptable LOS by 2045
TRANSPORTATION DEMAND
- Potential Future Signal Illustrative Reconstruction Project (2045 MTP)
SOCIAL OR ECONOMIC DEMAND
Key Land Use Significant Growth Area (Exxpected to Impact Corridor)
MODAL INTERRELATIONSHIPS
- Gaps in Sidewalk Connectivity - Ped Ramp Doesn't Meet Current Standards -00• Future Bike Route (Crossing Mn 220) - Future Multiuse Trail (Along Mn 220) Preferred Crossing Point for Area Schools (currently uncomfortable crossing for bikes and peds)
ROADWAY DEFICIENCIES
(1) Signal System Expected to Reach End of Useful Life by 2030
SAFETY
Crash Issue (Exceeds Statewide Average)
Crash Issue (Exceeds Critical Rate)

Notes:

(1) Previously identified project to provide right turn/merge modifications and signal timing improvements (2045 MTP).Illustrative project to extend 4-lane to 2-lane transition to 23rd Street NW (2045 MTP)
3. Illustrative project to reconstruct DeMers Avenue (2045 MTP). DeMers Avenue is on National Highway System. Greater Minnesota mobility has identified potential mobilityconcerns.

Pedestrians must cross roadway to continue north/south connectivity
5 Gap in sidewalk network and accessibility.
(6) Current spacing of intersections betwen 9th Street NE and 23rd Street NW do not meet MnDOT access spacing guidelines of $1 / 4$ Mile.
(7) MnDOT project assessment indicates that the segment from US 2 to 140th Street SW will require concrete pavement rehabilitation in 2033 and reconstruction in 2058
(8) Increased traffic demand north of 23rd Street NW likely to warrant turn lanes at key locations between 23 rd Street NW and 140th Street SW. Additionally, future redevelopment of adjacent agricultural land will require access management guidance.

(A) 23rd Street NW - 140th Street SW Segment Alternatives No Build Alternative A 2-Lane with Left Turn Lanes Alternative B 3-Lane with Two-Way Center Left Turn Lane

Miscellaneous
(N-T) Relocate utilities to improve sightline (N-2) Restripe lane drop and turn lane be
Sidewalks

$5-1)$
Mn 220 - E Side (20th St NW to 23rd StNW)
(5-2)
20th Street NW - Both Sides (5th Ave NW to Mn 220)

(5-1) Mn 220-E Side (20th St NW to 23rd StNW) (5-2) 20th Street NW - Both Sides (5th Ave NW to Mn 220 (5.3) 15 th Street NE - North Side
(5.5) 10 (Mn 220 to east of Frontage Rd) (5-4) 10th Street NW - Both Sides (Terrace Dr to Mn 220) (5-9) 10th Street NE - Both Sides (Mn 220 to 2nd Ave NE) (5-6) Mn 220 \& US 2 - NW Corner (to Frontage Road)

Pedestrian Cossing Improvements Transit
(8-1) $\begin{aligned} & \text { Improve Pedestrian Crossing } \\ & \text { (see Intersection } 2 \text { Alternatives } A \text { and } B) \\ & (T-1) \\ & (17 \text { th Street NE) }\end{aligned}$
(1-2) - Add curb extension

- Upgrade ped pamps with ADA

Improve Pedestrian Crossing

ALLIANT
ENGINEERING
Mn 220 North Corridor Study
Highest-Ranked Feasible Alternatives

Sidewalks	Transit	Miscellaneous
(5-1) Mn $220-\mathrm{ESide}$ (20th St NW to 23rd St NW)	(T-1) Transit Shelter Improvement (17th Street NE)	(M-1) Relocate utilities to improve sightlines
(s-2) 20th Street NW - Both Sides (5th Ave NW to Mn 220)	(T-2) Transit Shelter Improvement	
(5-4) 10th Street NW - Both Sides (Terrace Dr to Mn 220)	(T-3) Transit Shelter Improvement	
(s-5) 10th Street NE-Both Sides (Mn 220 to 2nd Ave NE)	(10th Street NE- Northbound)	
(s-6) Mn 220 \& US $2-$ NW Corner (to Frontage Road)	(T-4) Transit Shelter Improvement (10th Street NW - Southbound)	

ALLIANT
engineering

Mn 220 North Corridor Study

17th Street NW Alternatives

Existing Stop Control

Improve Pedestrian Crossing (Curb Extension, Refuge Median, ADA Ramps)

Considerations:

- Short-term intersection solution
- Does not address these concerns:
-Long-term intersection mobility
- Existing intersection details

Analysis:

- Cost: \$61,000
- Mobility: No Change
- Safety: No Change
- R/W: None
- 20-Year Traffic Operation Benefit: No Change
- 20-Year Safety Benefit: No Change
- Benefit/Cost: NA

Grand Forks - East Grand Forks

engineering

Alternative B

Alternative A
Rebuild Signal System, Dual EB Left Turn Lanes, and Right Turn Channelization Improvements

Considerations:

- Flashing yellow arrow provides operational flexibility
- Expected to improve intersection operation
- Expected to improve motorist safety
- Minimizes need for 5th Ave NW full access

Analysis:

- Cost: \$3,000,000
- Mobility: 2045 LOS C
- Safety: 28% reduction in crash rate and 25% reduction in crash severity rate
- R/W: None
- Benefit/Cost: 3.4

Install Roundabout

Considerations:

- Fits within existing intersection footprint
- Expected to increase crashes but significantly reduce severity of injury crashes
- Not ideal control device if 14 th remains signal
- Familiarity of multilane roundabout is a concern

Analysis:

- Cost: Approximately $\$ 3,600,000$
- Mobility: LOS A (2045) or LOSC if no connection at 5th Ave
- Safety: $\mathbf{7 1 \%}$ increase in crash rate and 35% increase in crash severity rate (but 20\% decrease in Type A and B severe crashes)

- R/W: None

- 20-Year Traffic Operation Benefit: $\$ 38,510,513$
- 20-Year Safety Benefit: $\$ 4,255,888$
- Benefit/Cost: 17.34

Alternative C

Displaced Eastbound Left Turn

Considerations:

- Improves intersection capacity by removing high volume conflicting movement
- Adds additional traffic signal
- Requires substantial R/W and frontage road impacts

Analysis:

- Cost: Approximately $\$ 2,900,000$
- Mobility: LOS C (2045)
- Safety: 25% reduction in crash rate and 23% reduction in crash severity rate
- R/W: Frontage Road Impact
- 20-Year Traffic Operation Benefit: \$9,010,428
- 20-Year Safety Benefit: $\$ 2,111,426$
- Benefit/Cost: 5.41

